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Parameter identification example

v Find model parameters, 
satisfying some bounds, 
for which the simulation 
matches the observed 
temperature profiles

v Computing objective 
function requires running 
thermal analysis code
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Energy minimization problem

v A single new drug may 
cost over $500 million 
to develop and the 
design process typically 
takes more than 10 
years

v There are thousands of 
parameters and 
constraints

v There are thousands of 
local minima

Docking model for environmental carcinogen bound 
in Pseudomonas Putida cytochrome P450
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Data Fitting Example

v Objective function 
consists of computing 
the max temperature 
difference over 5 
curves

v Each simulation 
requires approximately 
7 hours on 1 processor

v Uncertainty in both 
the measurements and 
the model parameters
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General observations

v Many optimization problems have expensive objective 
functions
» Objective function requires solution to a large-scale PDE or 

similar type of simulation
» One function evaluation can take several CPU hours even on 

a parallel processor
v Adding more processors to the function evaluation is not 

always efficient or productive
» Many applications do not scale well

v May not even be able to parallelize the objective function
» Black-box functions



The Basic Ideas of Optimization
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General Optimization Problem
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Some special cases

v Linear programming
» Objective function and constraints are linear

v Quadratic programming
» Objective function is quadratic, constraints are linear

v Discrete/Integer programming
» Optimization parameters have discrete values or must 

take on integer values only
v Stochastic optimization

» Stochastic components inherent in the problem
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Some standard assumptions

vObjective function has infinite (machine) 
precision

vObjective function is smooth
» First and second derivatives available
» Both derivatives are also “nice”

v Constraints are linearly independent and 
smooth
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General Philosophy

v Build an approximate model of the nonlinear 
objective function
» Usually quadratic
» Some interesting new research on other models

v Solve the model for its minimum
v See how well you did and either accept the answer 

or throw it away
v Repeat until you run out of time and or money
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Derivation of Newton equations

v Build quadratic model

v Find the minimizer of the quadratic

v Check how well you did, i.e. is
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Newton Methods

v Fast convergence 
properties

v Good global 
convergence 
properties

vQuasi-Newton 
approximations 
work well in 
practice

v Inherently serial
v Difficulties with 

noisy functions
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Practicalities

or

What you don’t know will probably 
hurt you!
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Facts of life for practical optimization

v Objective function has infinite (machine) precision
» Sometimes true, but many simulation-based optimization 

problems can create noisy behavior
v Objective function is smooth

» Probably differentiable, but how do you prove it
» What do you do if you’re not given derivative information

v Constraints are linearly independent and smooth
» Users can sometimes over specify or incorrectly guess 

constraints
» You have to beware of “hidden” constraints



What does this mean in a 
Practical Problem?
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Optimizing the performance of a LPCVD 
furnace

v Temperature uniformity 
is critical
» between wafers
» across a wafer

v Independently controlled 
heater zones regulate 
temperature

v Wafers are radiatively 
heated

Heater zones

Silicon wafers 
(200 mm dia.)

Thermocouple

Quartz pedestal
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Computing the objective function requires 
the solution of a PDE

v Finding temperatures involves 
solving a heat transfer problem 
with radiation

v Two-point boundary value 
problem solved by finite 
differences

v Adjusting tolerances in the PDE 
solution trades off noise with 
CPU time

» Larger tolerances lead to
– Less accurate PDE 

solutions

– Less time per function 
evaluation
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The goal is to find heater powers that yield 
optimal uniform temperature
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v 7 Zone furnace configuration
v Quasi-Newton method exhibits “stair-stepping”
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Parallel Optimization
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Schnabel (1995) identified three levels for 
introducing parallelism into optimization

1. Parallelize evaluation of functions, gradients, and or 
constraints

2. Parallelize linear algebra

3. Parallelize optimization algorithm at a high level
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Parallelism is easily introduced when finite-
difference gradients are used

v Option 1 in Schnabel’s taxonomy

v Components of the gradient can be computed 
independently on separate processors

v Components of the gradient can be computed 
speculatively (Byrd, Schnabel, Shultz, 1988)
» trial point is accepted 60-80% of the time
» compute components of the gradient simultaneously 

with the function value
» difficult to do better than this strategy
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Parallelize the linear algebra 

v Much research in this area
v Outstanding progress in recent years

v BUT, this is really only useful for large-scale 
optimization problems
» If the function evaluation dominates the 

computational time, then this option will not prove 
effective
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Direct Search Methods

v Methods that “in their heart” do not use 
gradient information

v Main operation is function comparisons
v Useful whenever the derivative of the 

objective function is not available or is too 
expensive to compute
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Direct Search Methods (cont.)

v Line search
v Conjugate Direction
v Simulated Annealing

» Based on annealing – cooling of a liquid to a solid
» Allows uphill directions
» Claim to find global minimum

v Evolutionary Algorithms / Genetic algorithms
» Based on “evolutionary” concepts
» Can be used for discrete variable problems
» Claim to find global minimum

v ...
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Direct Search Methods (cont.)

v Nelder-Meade Simplex
» One of the most popular methods
» Can construct examples where method fails (convex, 

differentiable, 2 variables)
v Multidirectional Search, Dennis &Torczon, (1989, 

1991)
v Asynchronous Parallel Pattern Search, Hough, 

Kolda, Torczon, (2000)
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Pattern Search

Special thanks to Tammy Kolda for this slide
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xbest

∆best

Basic Parallel Pattern Search

Special thanks to Tammy Kolda for this slide
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Parallel Direct Search (PDS) method
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Advantages and Disadvantages

v Do not require derivative information 
v Can handle noisy functions

» Since methods only rely on function comparisons
v Inherently parallel

» Many methods easily parallelized

v Convergence can be painfully slow
v Scant convergence theory 
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Can we combine direct search with Newton 
ideas?

xN

xc

xCP

v Fast convergence 
properties of 
Newton method

v Good global 
convergence 
properties of trust 
region approach

v Inherent parallelism 
of PDS

v Ability to handle 
noisy functions

A Class of Trust Region Methods for Parallel Optimization, P.D. Hough and J.C. Meza, 
to be published in SIAM Journal on Optimization
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General statement of TRPDS algorithm

Given x0, g0, H0, δ0, and η
for k=0,1, … until convergence do

1. Solve HksN = -gk

for i=0, 1, … until step accepted do

2. Form initial simplex using sN

3. Compute s that approximately minimizes f(xk + s),    subject to 
trust region constraint

if ared/pred > η then

5. Set xk+1 = xk + s; Evaluate gk+1, Hk+1

endif

6. Update δ
end for

end for
A Class of Trust Region Methods for Parallel Optimization, P.D. Hough and J.C. Meza, 
to be published in SIAM Journal on Optimization
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Convergence of TRPDS follows from theory 
of Alexandrov, Dennis, Lewis, and Torczon (1997)

v Assume
» Function uniformly continuously differentiable and bounded 

below; Hessian approximations uniformly bounded

» Approximation model satisfies the following conditions:

1. a(xk)  =  f(xk)
2.∇a(xk)  =  ∇f(xk)

» Steps satisfy fraction of Cauchy decrease condition
v Then

» lim inf  || ∇f(xk) || = 0
k →∞
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TRPDS becomes more competitive with 
standard methods as accuracy decreases
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TRPDS is more robust than standard methods 
when we have fewer digits of accuracy

1260

1270

1280

1290

1300

1310

1320

1330

1340

14.4 20.4 26.5 32.6 38.7 44.8 50.8 56.9 63 69.1 75.2 81.2 87.3

Distance from bottom of furnace (cm)

Te
m

pe
ra

tu
re

 (K
)

1.00E-02
1.00E-04
1.00E-06
1.00E-08
1.00E-10
1.00E-12
target

Wafer Temperatures for Optimal Powers Obtained by TRPDS



CS267, Applications of Parallel Computers, Lecture 21, November 5, 2002

BFGS may not converge when simulations 
have fewer digits of accuracy
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Constrained Optimization
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Constrained Optimization Ideas

v Generally speaking a more difficult problem
» Hard versus soft constraints

v Bound (“box”) constraints fairly easy to handle
v Linear equality constraints

» Various elimination techniques available
» Need to be careful about ill-conditioning

v Linear inequality constraints more complicated
» Need to guess which constraints are active at the 

solution



CS267, Applications of Parallel Computers, Lecture 21, November 5, 2002

Methods for nonlinearly constrained 
problems have a rich history

v Barrier/Penalty methods
» Add terms to the objective function to “induce” the 

algorithms to stay feasible
» Have to worry about ill-conditioning

v Successive Quadratic Programming methods
» Reformulate problem as a sequence of quadratic 

programming problems
» Normally infeasible methods

v Interior Point methods
» Try to maintain feasibility by following a “central path”
» Good for problems with hard constraints
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NIPS: Nonlinear Interior Point Solver

v Based on Newton’s method for a particular system of 
equations (perturbed KKT equations, slack variable 
form)

v Can handle general nonlinear constraints
v Can handle strict feasibility
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Summary

v Optimization arises in many applications
» Parameter identification
» Optimal Design/Control
» Minimization

v Practical problems often exhibit characteristics 
that make standard methods difficult/impossible to 
use

v Few good methods for parallel optimization
» Many possibilities for new research topics
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Future Directions

v Better interior point methods
v Mixed integer nonlinear programming problems
v Optimization under uncertainty
v Surrogate methods for expensive functions
v Non-smooth optimization
v ...
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Software References

v DOE ACTS Collection
» http://acts.nersc.gov/

v APPSPACK
» http://csmr.ca.sandia.gov/projects/apps.html

v NEOS – Network Enabled Optimization Software
» http://www-neos.mcs.anl.gov/neos

v General Software
» http://sal.kachinatech.com/B/3/index.shtml

v More´ and Wright, Optimization Software Guide, 
SIAM, 1993



The End


